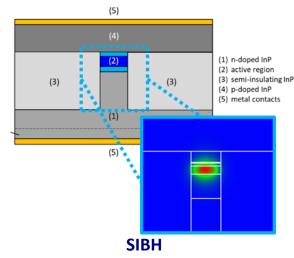

Indium Phosphide Photonic Integrated Circuit Open Foundry Offer (SIBH-OPIC-1.0)


The III-V Lab O-band SIBH-OPIC-1.0 InP Photonic Integrated Circuit technology is now available as a flexible Multi-Project-Wafers offer.

- **SIBH-OPIC-1.0** is a High-Performance **O-Band Technology suitable for** demanding Photonics Applications in terms of:
 - Thermal Efficiency
 - **Optical Power**
 - **Active and Passive Building Blocks** Integration
- Strong competitive advantage thanks to **Semi Insulating Buried Heterostructure** (SIBH) associated to Aluminium **Quantum Wells:**
 - High energy efficiency for lasers and gain
 - Fully compatible with very high-speed modulators
 - Compatible with spot size converters
 - Good thermal dissipation
 - Suitable for high temperature operation

ВВ	Parameters	Performance Indicators
DFB	Length	Threshold Current @ 45°C: <10mA
	Phase shift	Slope Efficiency @ 45°C: 0.15W/A
	Emission wavelength	Emission Wavelength Range: 1260nm-1320nm SMSR: >45dB
EAM	Length	• SER @-2V: 9dB
EAIVI		• E/O BW: >30GHz
SOA	Length	Gain: 47.8cm-1 @ 4.17kA/cm2 Current Density and -25dBm Pin

Aluminium Quantum Wells

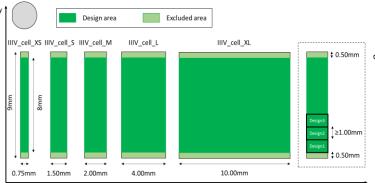
ВВ	Parameters	Performance Indicators	
Straight WG	Length	• Loss: <3dB/cm	
Curved WG	Bending radius	• Excess Loss < 0.5dB for bending radius > 500um	
2x1 MMI*	Length: 301μm	• Excess loss: <1dB	
MMI	Width: 15μm		
2x2 MMI*	Length: 915μm	a Evenes lassy 41 dD	
MMI	Width: 23μm	Excess loss: <1dB	
DBR	Length	Reflectivity	
	Wavelength	up to 95% • Thermal tuning range: <= 5nm	
	Sampling		
SSC	Maximum output mode diameter	• Mode diameter : H: 3µm x V: 3µm	

(*) 2x1MMI and 2x2MMI have only fixed geometries. All other building blocks offer a larger range of geometries. Please refer to the Design Manual for more details.

> DFB: Distributed Feedback Laser **EAM**: Electro Absorption Modulator

SOA: Semiconductor Optical Amplifier

WG: Waveguide


You can easily design your own high performance functions by using a comprehensive Process Design Kit compatible with the main photonic design and simulation tools available on the market. The main available building blocks are illustrated above. More are available in our Design Manual available on demand at foundry@3-5lab.fr.

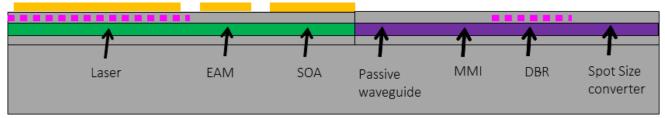
Indium Phosphide Photonic Integrated Circuit Open Foundry Offer (SIBH-OPIC-1.0)

- The design cell area can be selected to perfectly match with your project from 0.75x8.00 mm² to 10.00x8.00 mm².
- Several cells can be ordered depending the required on amount of different PIC designs.

- A full turn-key MPW offer from Process Design Kit to diced PICs:
 - 2 Multi-Project-Wafer runs per year / Dedicated runs on demand
 - Process Design Kit and PIC design support
 - Front-end: wafer manufacturing

Base Epitaxy

Active/Passive Integration


SIBH Waveguides Metallization, Vias. Access pads

- Wafer processing compliance monitoring
- Back-end: PICs preparation and shipment

Backside Metallization Bars cleaving, AR coating, **Dicing**

Gel packs, Sealing, Shipment

- At least one MPW run every 6 months taking advantage of the latest building blocks of the yearly PDK release. 1st MPW scheduled for second half 2024.
- **Future PDK releases will include:**
 - Selective area growth for active/active integration
 - Semi-Insulating substrates for increased modulation speed
 - Deep waveguides for better optical confinement and smaller waveguide bending radius
 - Electro-optical phase modulators for increased modulation speed
 - Photodiodes with telecom-grade bandwidth and responsivity

Cross-section view of a PIC

III-V Lab (*)

1, avenue Augustin Fresnel

91767 PALAISEAU CEDEX - France

(*) Joint lab between Nokia, Thales and CEA

www.3-5lab.fr

foundry@3-5lab.fr

AT35/C/2024/05/0383/ May. 30 2024

III-V Lab is certified ISO9001-2015

Early announcement,

1st MPW scheduled for second half 2024

igures are not contractual. III-V Lab reserves the right to make changes to the products or information contained herein without notice. Copyright © 2024 III-V Lab. All rights reserved